小学数学教案六篇
作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,教案是实施教学的主要依据,有着至关重要的作用。怎样写教案才更能起到其作用呢?下面是小编精心整理的小学数学教案6篇,希望对大家有所帮助。
小学数学教案 篇1概念是事物本质属性在人们头脑中的反映。小学数学中反映数和形本质属性的数字、图形、符号、名词术 语和定义、法则等都是数学概念。小学数学概念教学与学生的思维发展有着密切的关系。教学时,教师不仅要 使学生正确、清晰、完整地理解数学概念,而且要在概念的引入、形成、深化过程中,重视对学生进行思维训 练。
一、在引入概念时训练学生的形象思维
形象思维以表象和想象为基本形式,以观察、实验、联想、类比、猜想等为基本方法。在数学概念引入时 ,教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学 生获得正确、完整、丰富的表象,训练学生的形象思维。
例如“面积”的概念,可通过引导学生观察黑板、桌子、课本等实物的面引入,还可以引导学生用小刀剖 开萝卜观察它的截面,让学生亲眼看一看,亲手摸一摸引入。通过多种感官的协同活动,使面积的具体形象在 学生头脑中得到全面的反映。
又如教学“除法的初步认识”,一位教师先让学生分小棒:每人拿出8根小棒,把它们分成两排,看有几种 分法。 教师适时把他们的不同分法展示出来:
附图{图}
然后启发学生观察比较:这四种分法有什么相同?有什么不同?从而引出“平均分”。
这样引入概念,符合小学生掌握概念的认知规律:即从外部的感知开始,通过一系列外部操作活动和内部 智力活动,把感性材料和生活经验化为概念。
二、在概念的形成中训练学生的抽象思维
抽象思维是用抽象的方式对事物进行概括,并凭借抽象材料进行的思维活动。它以概念、判断、推理为基 本形式,以分析与综合,比较与分类,抽象与概括、归纳与演绎为基本方法。数学抽象思维能力指的是理解、 掌握和运用数学概念与原理的能力。
在小学数学概念形成过程中,要及时把概念从具体引向抽象,抓住实质,排除个别实例对全面理解和运用 概念的干扰,使学生充分了解概念的内涵和外延。
例如,一位教师教学“长方体和正方体的认识”时,在指导学生给不同形体的实物分类引入“长方体”和 “正方体”的概念后,及时引导学生先把“长方体”或“正方体”的各个面描在纸上,并仔细观察描出的各个 面有什么特点,再认识什么叫“棱”?什么叫“顶点”,然后,指导学生分组填好领料单,根据领料单领取“ 顶点”和“棱”,制作“长方体”或“正方体”的模型,边观察边讨论,长方体与正方体的顶点和棱有什么特 点,最后指导学生自己归纳、概括出“长方体”和“正方体”的特征。从而使学生充分了解“长方体”和“正 方体”这两个概念的内涵和外延。这样,既使学生掌握了“长方体”、“正方体”概念的本质属性,又训练了 抽象思维。
三、在深化概念中训练学生思维的深刻性
学生数学思维的深刻性集中表现在善于全面地、深入地思考问题,能运用逻辑思维方法,思考与问题有关 的所有条件,抓住问题的实质,正确、简捷地解决问题。在深化概念的教学中,可从以下两方面训练学生思维 的深刻性。
一是在学生理解和形成概念之后,要引导他们对学过的有关概念进行比较、归类。既要注意概念间的相同 点和内在联系,把有关概念沟通起来,使其系统化,又要注意概念之间的不同点,把有关概念区分开来。从而 使学生逐步加深对概念内涵和外延的认识,深入理解概念。例如学习了“比”的概念后,可设计下表引导学生 弄清“比”、“除法”、“分数”这三个概念之间的联系与区别。 名称 举例 相 互 关 系 区别
比 2:3 前项 :(比号) 后项 比值 两个数的关系 除法 2÷3 被除数 ÷(除号) 除数 商 一种运算 分数 2/3 分子 ──(分数线) 分母 分数值 一个数
二是在运用数学概念解决问题的过程中,要引导学生识别数学概念的各种变式,从变化中抓概念的本质。 例如,学生认识了“直角”后,教师,出示不同位置的直角(如下图),让学生判断:
附图{图}
这些角是不是直角,并用三角板上的直角进行检验。从而排除干扰,突出直角的本质属性,训练学生思维 的深刻性。
小学教学概念的掌握与数学思维的训练是相辅相成的。不依赖于数学思维,不可能学好数学概念;正确的 数学概念教学,又有助于数学思维能力的提高。在概念教学实践中,教师要有意识地把训练学生的数学思维方 式、品质、能力和方法贯穿在概念教学的各个环节之中。
小学数学教案 篇2教材分析:
分数和小数的互化是学习分数、小数混合运算的基础,必须切实学好。分数能化成有限小数的,其方法有两种,一是根据分数与除法的关系,用分母去除分子,得出小数商。二是根据分数的基本性质,将分数转化成分母是10、100、1000……的分数,然后再化成小数;分数不能化成有限小数的,只能用分子除以分母的方法,得出的小数商再按四舍五入法则根据要求保留小数的位数。教学时要讲清“=”和“≈”使用的道理。
学情分析:
在教学分数与小数的互化时,应始终从学生已有的知识基础出发,引导学生运用自身的策略和方法进行尝试和探索,通过交流、辨析和比较,逐步明确分数与小数互化的基本方法。如在教学例9时,放手让学生用自己的方法比较0.5与3/4的大小。学生可以用估算的方法比较,也可以把分数化成小数,还可以用画图的方法比较。至于如何把分数化成小数,要启发学生应用前面学习的分数与除法的关系进行思考,并在交流的过程中让学生理解这种方法。
教学目标:
(体现多维目标;体现学生思维能力培养)
1、知识目标:使学生理解小数化成分数的方法,能根据分数与除法的关系把分数化成小数
2、能力目标:在学生探究新知的过程中培养学生观察、归纳、解决问题的能力。
3、情感目标:在总结规律过程中培养学生对待知识的科学态度和探索精神。
教学重点:
掌握分数化小数的基本方法以及小数化成分数的基本方法。
教学难点:
灵活运用小数与分数互化的方法解决实际问题。
教法学法:
1、通过直观形象的课件展示,让学生主动探究分数化小数,小数化分数的方法。
2、采用启发式教学法,循序渐进的引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。
教学过程:
一、媒体运用、任务导学、明确任务
最近,和我们同一学年的明明和欢欢,遇到了一些关于分数和小 ……此处隐藏4538个字……3:当宣布是北京的时候,全国都沸腾了。
师:是的,这份激动真让人难以抑制,我相信每一个中国人都非常自豪,北京以绝对的优势胜出了。在昨天的学习中我们知道了北京以34的优势胜出多伦多,(出示统计图表)从票数上你还想
了解什么?
学生1:北京比巴黎多几票?
学生2:北京比伊斯坦布尔多几票?
学生3:北京比多伦多与巴黎的票数和多几票?
师:你们想了解的问题可真多,别着急,我们慢慢来,先看第一个。(出示例2)
二、探求新知
1.学习例2。
北京56票,巴黎18票,巴黎比北京少多少票?
也就是求18比56少多少,用减法计算。
56 -18=
(1)动手摆小棒,合作探究。
a.请小组同学合作,试着摆一摆。
b.请学生汇报摆的过程和结果,请个别同学在投影仪上用实物边摆边说。
思考问题:
a.为什么要拆开一捆呢?(因为单根不够减)
b.现在整捆还剩几捆?为什么?
c.现在单根还剩几根?为什么?
拆开一捆是10根,从10根中去掉8根是2根,把剩下的2根与原来的6根合在一起是8根。
(2)多媒体课件演示摆小棒的过程,教师跟随画面讲解。
2、结合摆小棒图,引导列竖式。
根据刚才摆小棒的过程,你们会列竖式解答吗?请小组同学互相讨论一下,列竖式时
怎样计算。
问题:
(1)个位上的“6”减“8”不够减,怎么办?
(2)十位上退1之后,还剩几?十位上的数相减时,是5减1,还是4减1?为什么?
3、汇报交流。
(1)个位上6减8不够减,怎么办?
生1:个位上不够减,可以从十位借1当10,再减。
生2:不够减可以从十位借。
生3:刚才我们摆小棒是从一捆里减去8根,我想先从十退一,也就是10先减去8,再把剩下的
2和被减数个位上的相加得8。
生4:从个位上加十再减。
板书: 4 16
5 6
- 1 8
——----—
8
(2)十位上的算法。
十位上被个位借1之后,还剩4个十,减去1个十就是3个十。
板书: 4 16
5 6
- 1 8
——-----
3 8`
4、学习例3。
50 - 24 =
你们会算吗?谁能说说个位上0减少,该怎么减呢?个位上0减4不够减,从十位退1,个位要算10减4。
学生独立解答,然后集体订正。
4 10
5 0 个位:10 - 4 = 6
- 2 4 十位: 5 - 1 = 4,4 - 2 = 2
——------ 合并: 2个十和6个一是26。
2 6
三、积累运用。
1、完成教材第19页“做一做”的第2题。
做完后,集体订正,然后小组讨论,笔算退位减法要注意什么?
(1)写竖式时,相同数位对齐。
(2)计算时,个位减起。
(3)个位不够减,就从十位退1。
(4)“退位点”提醒我们从十位减1。
2、完成练习三中的第6题。
请同学们认真观察计算过程,并说说错误的地方,该如何改正。
四、总结提升。
通过本节课的学习,你们学习了什么?如何进行两位数减两位数?
两位数减两位数退位减 来自的推荐
小学数学教案 篇6教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第19~21页例3,课堂活动第1~2题和练习四第2~6题和思考题。
教学目标
⒈进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。
⒉培养学生灵活运用所学知识解决实际问题的能力。
⒊让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。
教学重、难点
灵活运用乘法交换律和乘法结合律进行简便计算。
教学过程
一、 复习旧知,引入新课
1.回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。
2.填空。
我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。
二、探索新知
学习例3。
出示例3,算一算,议一议。
61×25×4 8×9×125
教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)
全班汇报,教师板书:
(1)
①61×25×4
②61×25×4
③…… =61×100 =1525×4 =6100 =6100
(2)
①8×9×125
②8×9×125
③…… =72×125 =9×1000 =9000 =9000
小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?
全班交流汇报。
教师小结:运用乘法运算律进行简便计算,它的核心就是"凑整"。
往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。
三、课堂活动
1.课堂活动第1题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。
2.课堂活动第2题:先让学生独立思考后,再在小组中讨论该怎样进行简便计算,最后全班反馈。
要学生认识到同一个计算可以有不同的简便计算方法。
3.练习四第2题:学生独立完成(连线)后反馈。
4.练习四第7题:学生独立完成后反馈。
5.练习四第8题。
学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。
其余学生判断。
最后让学生独立解决在课堂作业本上,不得少于3个问题。
注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。
四、拓展练习
思考题:引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。
根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。
五、课堂作业
练习四第3~6题。
六、课堂小结
这节课主要学习了什么知识?你还有什么问题吗?